Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon-vacancy color centers in nanodiamonds: cathodoluminescence imaging markers in the near infrared.

We recently demonstrated [ 18 ] multi-color cathodoluminescence (CL) of nanodiamonds as a powerful tool for nanoscale imaging of biological structures. CL is the emission of light by matter as the result of electron bombardment. CL imaging of bulk matter is typically carried out in an electron microscope outfi tted with an optical detector, and is widely used in materials characterization. [ 19...

متن کامل

Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond

Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, nonbleaching emission line at 738 nm. Two-photon excitation of this fluorescence offers the possibility of low-background detection at significant tissue depth with high threedimensional spatial resolution. We measure the two-photon fluorescence cross section of a negati...

متن کامل

Efficiency of Cathodoluminescence Emission by Nitrogen-Vacancy Color Centers in Nanodiamonds.

Correlated electron microscopy and cathodoluminescence (CL) imaging using functionalized nanoparticles is a promising nanoscale probe of biological structure and function. Nanodiamonds (NDs) that contain CL-emitting color centers are particularly well suited for such applications. The intensity of CL emission from NDs is determined by a combination of factors, including particle size, density o...

متن کامل

Germanium-Vacancy Single Color Centers in Diamond

Atomic-sized fluorescent defects in diamond are widely recognized as a promising solid state platform for quantum cryptography and quantum information processing. For these applications, single photon sources with a high intensity and reproducible fabrication methods are required. In this study, we report a novel color center in diamond, composed of a germanium (Ge) and a vacancy (V) and named ...

متن کامل

Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond.

Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assiste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Journal of Physics

سال: 2018

ISSN: 1367-2630

DOI: 10.1088/1367-2630/aae93f